
September 1997 The Delphi Magazine 33

Beating the System:
Now Where Did I Put That File...?
by Dave Jewell

➤ Figure 1: Here's the test-bed program, Finder, in action. As you can
see from the list-box, zipped file entries are identified by filename
with the enclosing name of the ZIP file in the second column.

Last month, you’ll recall that I
introduced a new, drop-in

Delphi class called TZipFile, the
idea being that you can use TZip-
File to peek inside a ZIP file and
enumerate the various files con-
tained therein.

As promised, this month I’m pre-
senting the code for another class,
TTreeFind, which you can use to
enumerate and search for files on
one or more disk drives, even when
those files might be stashed away
inside a ZIP file. Finally, this month
I’ll also provide the code for a
simple test-bed program which
shows how to tie this all together.

Sixteen Bits? Just Say No...
As a general rule, I try and make my
code work under both 16-bit and
32-bit versions of Windows. In this
month’s column, I’m not going to
bother to do that: it’s strictly 32-bit
only. No, this isn’t laziness on my
part, there are some good prag-
matic reasons for this decision.
Many moons ago, before Windows
dominated the market, I did most
of my software development under
DOS. At the time, I regularly used a
disk management program (which
had better be nameless!) that
allowed me to quickly scan my disk
drives for matching files, change
file attributes, and so forth.

This program was a big improve-
ment on COMMAND.COM because it
presented a graphical tree-view of
a disk, albeit in a text mode
window. However, problems arose
when hard disk drives started get-
ting bigger. My trusty disk manage-
ment program had been designed
to work with floppy disk drives and
early disk drives, often no more
than 10Mb in size! When faced with
a 100Mb drive and several thou-
sand files, it quickly ran out of
memory and went belly-up. It’s for
just this reason that this month’s
code is 32-bit only.

I make extensive use of a
TStringList object to store the list
of matching files, something that
works fine in 32-bit Delphi, but will
quickly get you into trouble under
16-bit Delphi where the maximum
capacity of a list is 16,380 items.
Now admittedly, you might not
have sixteen thousand files on a
single hard disk, but the code pre-
sented here can scan multiple disk
drives in one operation, as we shall
see. With today’s multi-gigabyte
drives, a 16-bit program will bump
into that upper limit much too
often. On the other hand, a 32-bit
list can store over 134 million
items. I reckon it’ll be a while
before hard disk drives get that big!

OK, so why use a list? Why can’t I
process each file, ‘as it comes’ so to
speak? The reason is that I wanted
to write a completely general pur-
pose tree searching unit. My little
testbed program simply displays a
set of files that match the entered
file specification, and allows you to
‘launch’ a selected file. However, in
a real-world example, you might
want to write a program that (for
example) searches your hard disk

for .ICO files, and displays them in
an owner-draw list-box, allowing
you to select a suitable icon for
your next project. Some tasks
require a list, while others (such as
deleting all files of a certain type)
can be done sequentially. To be
completely general purpose,
you’ve got to implement some sort
of list mechanism.

The Testbed Program
The testbed is shown running in
Figure 1. Both this program
(FINDER.EXE) and the source code
are included on this month’s cover
disk, but do please bear in mind
that this particular program isn’t
the object of the exercise: it’s
simply a demonstration to show
you how to use the classes I’ve
developed over the last couple of
months.

As you can see, quite a number
of different options can be speci-
fied. The first box on the left hand
side contains the drive selection
parameters: which disk drives are
searched for matching files. The
Default Drive box tells the pro-
gram to search the default drive.

34 The Delphi Magazine Issue 25

➤ Figure 2: Would the Windows 95 Explorer ever lie to you? As a
matter of fact, yes. The picture shown here represents the true state
of the Internet Explorer temporary files cache, but it ain't what
Explorer tells you is going on. Read the accompanying text for a
more detailed explanation.

Under DOS and Windows, every
process has its own idea of what
the ‘default’ drive might be; the
default drive simply depends upon
what it was previously set to last
time. For example, if you execute a
program on drive D:, you’ll find
that D: is the default drive when the
program starts running. However,
if the program changes the default
(or ‘current’) drive to C:, then it will
stay this way until it’s changed
again. Because of this uncertainty,
it’s best not to use the default drive
facility, although I have provided it
as an option in the code.

The next five drive selection
parameters are very straightfor-
ward. In each case, clicking a par-
ticular check-box includes that
drive category in the file search.
For example, click the Removable
Drives checkbox and any floppy
disks will be included in the
search, click Fixed Drives and all
your hard disks will be included
too. This is all well and good, you
may say, but what if you want to
just search a specific drive? In
order to address that possibility,
you can enter an optional drive
letter in the File Spec box. In other
words, entering *.PAS will cause
the program to do a search for
Pascal files on all the checked drive
categories. However, if you enter
C:*.PAS as the file specification,
then only drive C: will be searched.
This is important: specifying an
explicit drive letter will override
any drive selection parameters.
You can see how this works in my
testbed program: as soon as you
type a drive letter, all drive selec-
tion controls are disabled. Natu-
rally, if you don’t check any of the
drive selection parameters and
you don’t specify a drive letter,
you’ll get an empty list every time!

Below the drive selection
parameters are the Read-Only,
Hidden and System checkboxes.
These control which file attributes
are included in the search. By
default, only “normal” files are
searched for. You might not realise
this, but DOS supports not only
hidden files, but hidden directories
as well.

Here’s an interesting little
experiment you can try: this

➤ Facing page: Listing 1

September 1997 The Delphi Magazine 35

unit TFind;
interface
uses Wintypes, WinProcs, SysUtils, Classes,
Controls, Forms, Dialogs, FileCtrl;

const
{ Attribute bits }
TF_ReadOnly = $0001; { Include read-only files }
TF_Hidden = $0002; { Include hidden files }
TF_SysFile = $0004; { Include system files }
TF_AllAttribs = $0007; { mask for attributes }
{ Drive Flags - only apply if no drive letter given }
TF_DefDrive = $0008; { search default drive }
TF_Removable = $0010; { search removable drives }
TF_Fixed = $0020; { search fixed drives }
TF_Remote = $0040; { search networked drives }
TF_CDROM = $0080; { search CDROM drives }
TF_RamDisk = $0100; { search RAM disks }
TF_AllDrives = $01f8; { mask for drive flags }
{ Misc flags }
TF_ZIPOnly = $4000; { ONLY look inside ZIP files }
TF_ZIP = $8000; { Include ZIP files in search }

type
TTreeFindProgress = procedure(Sender: TObject;
const Dir: String) of object;

TTreeFind = class (TObject)
private
flags: Word;
fSpec: String;
fFileSpec: String;
fList: TStringList;
fProgress: TTreeFindProgress;
function BuildDriveList(DriveList: TStringList):Boolean;
procedure TreeSearch (const Spec: String);
procedure SearchZipFile (const ZipFileName: String;
const Spec: String);

public
constructor Create;
destructor Destroy; override;
property SearchFlags: Word read flags write flags;
property FileSpec: String read fFileSpec
write fFileSpec;

property TheList: TStringList read fList;
property Progress: TTreeFindProgress read fProgress
write fProgress;

procedure Execute;
end;

implementation
uses Match, Zip;
constructor TTreeFind.Create;
begin
flags := TF_DefDrive;
fSpec := ‘*.*’;
fList := TStringList.Create;

end;
destructor TTreeFind.Destroy;
begin
fList.Free;
Inherited Destroy;

end;
function TTreeFind.BuildDriveList(DriveList: TStringList):
Boolean;

var
Str: String;
DType, Idx: Integer;
DCB: TDriveComboBox;

begin
Result := True;
{ If no drive flags specified, time to bottle out }
if Flags and TF_AllDrives = 0 then begin
Result := False;
Exit;

end;
{ First, handle the simple TF_DefDrive case }
if Flags and TF_DefDrive = TF_DefDrive then begin
Flags := Flags and (not TF_DefDrive);
GetDir (0, Str);
DriveList.Add (UpperCase (Copy (Str, 1, 2)));

end;
{ If other drive flags also present ...}
if Flags <> 0 then begin
{ Create temporary er... hack... to enumerate drives! }
DCB := TDriveComboBox.Create (Application.MainForm);
try
DCB.Parent := Application.MainForm;
DCB.Visible := False;
DCB.TextCase := tcUpperCase;
{ Loop through each drive in the list }
for Idx := 0 to DCB.Items.Count - 1 do begin
Str := Copy (DCB.Items [Idx], 1, 2);
DType := GetDriveType (PChar (Str + ‘\’));
if (DType > Drive_No_Root_Dir) { Valid drive } and
(Flags and (1 shl (DType + 2)) <> 0) then
DriveList.Add (Str);

end;
finally
DCB.Free;

end;
end;

end;
procedure TTreeFind.SearchZipFile(
const ZipFileName: String; const Spec: String);

var
idx: Integer;
zp: TZipFile;
fName: String;

begin
zp := TZipFile.Create (ZipFileName);
try
for idx := 0 to zp.FilesCount - 1 do begin
fName := ExtractFileName (zp.FileName [idx]);
if IsMatch (Copy (Spec, 3, 255), fName) then
fList.Add (fName + #9 + ZipFileName);

end;
finally
zp.Free;

end;
end;
procedure TTreeFind.TreeSearch (const Spec: String);
var
Dir: String;
Err: Integer;
SearchRec: TSearchRec;

begin
try
{ Find first matching file }
Err := FindFirst (‘*.*’, Flags and TF_AllAttribs,
SearchRec);

GetDir (0, Dir);
if Dir [Length (Dir)] <> ‘\’ then Dir := Dir + ‘\’;
if Assigned (fProgress) and (Flags and TF_ZipOnly = 0)
then fProgress (Self, Dir);

{ Loop for all files which match the specification }
while Err = 0 do begin
if Flags and TF_ZipOnly = 0 then
if IsMatch(Copy (Spec, 3, 255), SearchRec.Name) then
fList.Add (Dir + SearchRec.Name);

{ If doesn’t match the spec, might still be ZIP file }
if (Flags and (TF_ZIP or TF_ZIPOnly) <> 0) and
IsMatch (‘*.ZIP’, SearchRec.Name) then begin
{ Time to do some ZIP parsing ! }
fProgress (Self, Dir + SearchRec.Name);
SearchZipFile (Dir + SearchRec.Name, Spec);

end;
Err := FindNext (SearchRec);

end;
FindClose (SearchRec);
{ Find first sub-directory (if any) }
Err := FindFirst (‘*.*’, (Flags and TF_AllAttribs) or
faDirectory, SearchRec);

{ Loop for all sub-directories in this directory }
while Err = 0 do begin
if ((SearchRec.Attr and faDirectory = faDirectory) and
(SearchRec.Name [1] <> ‘.’)) then begin
ChDir (SearchRec.Name);
TreeSearch (Spec);
ChDir(‘..’);

end;
Err := FindNext (SearchRec);

end;
FindClose (SearchRec);

except
{ Should probably handle List-full errors here, but this
isn’t likely to be an issue for 32-bit Delphi. }

end;
end;
procedure TTreeFind.Execute;
var
Idx: Integer;
DirStash: String;
DriveList: TStringList;

begin
fList.Clear;
fSpec := fFileSpec;
if fSpec = ‘’ then fSpec := ‘*.*’;
DriveList := TStringList.Create;
try
DriveList.Sorted := True;
{ If drive letter specified, only one drive to check }
if fSpec [2] = ‘:’ then begin
DriveList.Add (UpperCase (Copy (fSpec, 1, 2)));
Delete (fSpec, 1, 2);

end else if not BuildDriveList(DriveList) then Exit;
Screen.Cursor := crHourglass;
try
{ Now apply TreeSearch to each drive }
for Idx := 0 to DriveList.Count - 1 do begin
{ Save current directory for the drive }
GetDir (Ord (DriveList [Idx][1]) - $40, DirStash);
{ Start from root }
ChDir (DriveList [Idx] + ‘\’);
{ Do the search }
TreeSearch (DriveList [Idx] + FSpec);
{ Restore stashed directory }
ChDir (DirStash);

end;
finally
Screen.Cursor := crDefault;

end;
finally
DriveList.Free;

end;
end;
end.

36 The Delphi Magazine Issue 25

A Match Made In Heaven...
Up until now, I haven’t discussed
the format of the file specification
which you use to perform file
matching. I’ve actually cheated in
this respect: the code presented
here uses a unit, MATCH.PAS, which
was developed by a chap called
Kevin Boylan. Kevin’s code, in turn,
is based on public domain C code
written by J Kerceval and uploaded
to CompuServe many moons ago.

The advantage of using this code
is that it will do far more for you
than ordinary DOS wildcard file-
name matching. You get all the
usual stuff such as ‘*’ and ‘?’ match-
ing, but it also implements a mini
regular expression matching
engine. For example, if you want to
search for all filenames which
begin with a digit, you can enter the
following as the file specification
[0-9]*. Alternatively, if you want to
exclude any filenames that begin
with ‘z’, you can enter [^z]*.

Other examples are given in the
source code for the MATCH.PAS
unit, which is included on this
month’s disk. I haven’t exhaus-
tively tried out the many different
pattern matching possibilities
available with this code and I don’t
comment on whether or not it’s
bug free. If you find any problems,
you can either report them to
Kevin or you can try to fix the code
yourself.

Incidentally, while developing
the TFIND unit, I toyed with the idea
of completely decoupling the pat-
tern matching algorithm from the
file searching code. In other words,
it would be up to the application
program to supply a pointer to a
procedure which is called from the
file searching code every time a
match needs to be performed. The
advantage of this approach is that
you can write different applica-
tions with different matching

algorithms without touching the
file searching code in any way. I
didn’t pursue this, but it would be
very easy to implement.

Before looking at the code for the
test-bed application, let’s now turn
to the TFIND unit itself, the code for
which is given in Listing 1. Here,
you can see that things are based
around a new class, TTreeFind. The
interface to this class is very
straightforward: you create an
object of type TTreeFind, set the
SearchFlags property according to
the various search flags you want
to use, set the FileSpec property to
whatever file specification you’re
interested in and then call the Exe-
cute method. Once the Execute
method returns to the caller,
TheList will contain a list of match-
ing file names.

That’s Progress...
In addition to this simple interface,
you can also supply an optional
call-back progress procedure. Pro-
gress is perhaps something of a
misnomer: DOS has such a primi-
tive programming interface that it
is impossible to determine the
number of files in a particular sub-
directory without actually enumer-
ating each file one by one. Thus, if
we wanted to implement some sort
of ‘percentage done’ progress
gauge, we’d have to make two com-
plete passes through all the
selected disk drives: once to deter-
mine the total file count, and then
once again in order to do the ‘for
real’ file matching. This is obvi-
ously not an option from an effi-
ciency point of view. Thus, the
progress hook contents itself with
passing back the name of the cur-
rent search directory so that the
user can visually see that things
are still ‘progressing’!

I won’t discuss the meaning of all
the TF_xxxx flags which can be OR’d
into the SearchFlags property.
We’ve already covered the various
possibilities in some detail. Simi-
larly, the constructor and destruc-
tor calls for TTreeFind are very
straightforward, the main job
being to create and destroy the
internal TStringList member.
Things get more interesting when
we turn to the Executemethod. As a

convenience, you’ll see that a
blank file specification gets con-
verted into *.*. This is generally a
good thing, but see my later cave-
ats on file deletion!

Because the TTreeFind class can
potentially operate on several dif-
ferent drives, we need to create a
list of drives that we’re going to
search. This is done through
another TStringList variable.
You’ll notice I set the Sorted prop-
erty of the variable to True. This
isn’t merely so that the drives get
enumerated in a predictable order,
there’s a much more subtle point
here: when you set the Sorted
property in a TStringList variable,
it will automatically cause dupli-
cate entries to be rejected by
virtue of the default setting of the
Duplicated property. We need to
ensure that duplicates get rejected
because, if you select the TF_Def-
Drive flag and also select TF_Fixed,
then one of your hard disks will get
entered into the list twice, and we
obviously don’t want a particular
drive to be scanned more than
once.

If a drive letter has been speci-
fied, then, as mentioned earlier, all
drive search parameters are
ignored, and only the specified
drive letter is entered into the
DriveList variable. If this is not the
case, then the BuildDriveList rou-
tine is called to add one or more
drives to the list according to the
SearchFlags which have been sup-
plied. Once this is done, the cursor
is changed to an hourglass, and
each drive in the list is enumer-
ated, setting the directory to the
root of the drive, and calling the
TreeSearch method to perform the
actual hierarchical scan. After-
wards, the previous current direc-
tory is restored and once all drives
have been processed the cursor is
restored to normal. Finally, Driv-
eList is destroyed and the method
exits.

So how does BuildDriveList
work? Well, here again, I’ve gone in
for a bit of judicious cheating. It
occurred to me that rather than
write a chunk of messy, low-level
code to determine what drives
were present, it would be easier to
just let the VCL library take the

September 1997 The Delphi Magazine 37

strain! Thus, I create an on-the-fly
TDriveComboBox control on what-
ever the application’s main form
might be, ensure that it’s invisible
and use it to determine what drive
letters are actually available. Yes,
it’s naughty, but it works! You’ll
also see that I deliberately chose
the various TF_xxxx flags so that
they could be bit-shifted into the
appropriate place for masking
against the values returned from
GetDriveType, making it easy to
distinguish the different types of
drive that we’re interested in.

This leads onto a discussion of
TreeSearch, which is the real heart
of the code. It’s here that we get to
do the recursive directory walk.
When discussing this project with
the Editor, he stressed that it was
important to provide support for
long filenames. The good news is
that, by making use of the Find-
First/FindNext routines in 32-bit
Delphi, we get long filename sup-
port for free. Aha! Is this another
nefarious reason why Dave
insisted on doing this in 32-bits, I
hear you cry!

As ever, there are some interest-
ing considerations in implement-
ing this code. I needed to be able to
detect the presence of ZIP files, but
how to do it efficiently? If I’d
passed the supplied file specifica-
tion directly the FindFirst API rou-
tine, then specifying (for example)
*.PAS would cause all .ZIP files to
be missed. Worse, the extended
search syntax which is supported
by the MATCH unit would have hope-
lessly confused the simple-minded
FindFirst code.

The solution is pretty obvious:
always pass *.* to the FindFirst
routine and then do any file match-
ing on whatever is returned from
each API call. Of course, this means
that the matching routine will be
called once for each entry in the
directory so it should be reasona-
bly fast. The Progress hook is
called twice within TreeSearch;
once whenever we enter a new
directory, and once whenever we
start scanning a ZIP file.

The calling code can (if wanted)
easily discriminate between the
two cases by just looking for the

.ZIP suffix on the end of the passed
string. If you wanted to get fancy,
you could pass a VAR Boolean vari-
able as an additional parameter,
giving the caller the opportunity to
request that certain directories
and/or ZIP files be excluded from
the search. I leave this and other
enhancements to you!

The final routine in the TFINDunit
is SearchZipFile. Based on last
month’s TZipFile class, it should
be pretty obvious what’s going on
here. The ZIP file is opened and the
code loops through the various
files, calling the same match algo-
rithm to determine whether or not
there’s a match with the file specifi-
cation. By using the same match
code, we can do exactly the same
fancy regular-expression searches
right inside the ZIP file.

Notice that when adding a
Zipped entry to the list, it’s added
as two strings (filename then ZIP
filename) separated by a tab char-
acter. It’s the responsibility of the
calling application to watch out for
an embedded tab character and
interpret this as a zip entry.

38 The Delphi Magazine Issue 25

➤ Listing 2

unit Ufinder;
interface
uses
WinTypes, WinProcs, SysUtils, Messages, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls, Buttons, TFind,
FileCtrl, ExtCtrls, ShellAPI;

type
TForm1 = class(TForm)
ListBox1: TListBox;
FileSpec: TEdit;
Go: TBitBtn;
Label1: TLabel;
Bevel1: TBevel;
GroupBox1: TGroupBox;
CheckBox1: TCheckBox;
CheckBox2: TCheckBox;
CheckBox3: TCheckBox;
CheckBox4: TCheckBox;
CheckBox5: TCheckBox;
CheckBox6: TCheckBox;
GroupBox2: TGroupBox;
CheckBox7: TCheckBox;
CheckBox8: TCheckBox;
CheckBox9: TCheckBox;
Button1: TButton;
GroupBox3: TGroupBox;
CheckBox10: TCheckBox;
CheckBox11: TCheckBox;
Header1: THeader;
procedure GoClick(Sender: TObject);
procedure CheckBox1Click(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure FileSpecChange(Sender: TObject);
procedure ListBox1DrawItem(Control: TWinControl;
Index: Integer; Rect: TRect; State: TOwnerDrawState);

procedure Header1Sized(Sender: TObject; ASection,
AWidth: Integer);

procedure ListBox1DblClick(Sender: TObject);
private
SearchFlags: Word;
procedure MyProgressHook(
Sender: TObject; const Dir: String);

public
end;
var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.MyProgressHook (Sender: TObject;
const Dir: String);

begin
Caption := ‘Scanning: ’ + Dir;

end;
procedure TForm1.GoClick(Sender: TObject);
var tf: TTreeFind;
begin
ListBox1.Clear;
tf := TTreeFind.Create;
tf.FileSpec := FileSpec.Text;
tf.SearchFlags := SearchFlags;
tf.Progress := Self.MyProgressHook;
Go.Enabled := False;
tf.Execute;
Caption := ‘TreeFind Testbed’;
Go.Enabled := True;
if tf.TheList.Count = 0 then
Listbox1.Items.Add(’No matching files found’)

else
ListBox1.Items.Assign (tf.TheList);

tf.Free;
end;
procedure TForm1.CheckBox1Click (Sender: TObject);
begin
with Sender as TCheckBox do
if Checked then

SearchFlags := SearchFlags or Tag
else
SearchFlags := Searchflags and (not Tag);

CheckBox10.Enabled := not CheckBox11.Checked;
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
Close;

end;
procedure TForm1.FileSpecChange(Sender: TObject);
var DrvFlgs: Boolean;
begin
DrvFlgs := (Length (FileSpec.Text)< 2)

or (FileSpec.Text[2] <> ‘:’);
CheckBox1.Enabled := DrvFlgs;
CheckBox2.Enabled := DrvFlgs;
CheckBox3.Enabled := DrvFlgs;
CheckBox4.Enabled := DrvFlgs;
CheckBox5.Enabled := DrvFlgs;
CheckBox6.Enabled := DrvFlgs;

end;
function NextSection (var Str: String): String;
var idx: Integer;
begin
if Str <> ‘’ then idx := Pos (#9, Str) else idx := 0;
if idx = 0 then begin
NextSection := Str;
Str := ‘’;

end else begin
NextSection := Copy (Str, 1, idx - 1);
Delete (Str, 1, idx);

end;
end;
procedure TForm1.ListBox1DrawItem(Control: TWinControl;
Index: Integer; Rect: TRect; State: TOwnerDrawState);

var
Str: String;
x, idx: Integer;

begin
with ListBox1, ListBox1.Canvas, Header1 do begin
idx := 0;
FillRect (Rect);
x := Rect.left + 3;
Str := Items [Index];
while Str <> ‘’ do begin
TextOut (x, Rect.top, NextSection (Str));
Inc (x, SectionWidth [idx]);
Inc (idx);

end;
end;

end;
procedure TForm1.Header1Sized(Sender: TObject;
ASection, AWidth: Integer);

begin
ListBox1.Invalidate;

end;
procedure TForm1.ListBox1DblClick(Sender: TObject);
var
fName: String;
TabPos: Integer;

begin
with ListBox1 do
if ItemIndex <> -1 then begin
fName := Items [ItemIndex];
{ Is this a ZIP entry ? }
TabPos := Pos (#9, fName);
if TabPos <> 0 then
fName := Copy(fName, TabPos + 1, 255);

ShellExecute(Handle, ‘open’, PChar (fName), Nil, Nil,
SW_ShowNormal);

end;
end;

end.

Finder, The Testbed Program
This brings us neatly onto a discus-
sion of Finder, the sample program
which is included on this month’s
cover disk, the source for which is
shown in Listing 2. The two-column
listbox is implemented using my
old trick with tab-delimited strings,
hence the presence of the familiar
NextSection routine. I really must
turn this into a custom control!

Each of the various checkboxes
on the left hand side of the window

have their Tagproperty set equal to
the value of the search flag that
they control, and they all point to a
single common OnClick handler. If
you haven’t used this technique in
your own programs you should, it
greatly reduced the amount of
code you have to write. The only
wrinkle here is the ZIP Files Only
checkbox: if this is checked, then
the Include ZIP Files checkbox is
essentially superfluous so it’s
disabled by the OnClick code.

In a similar fashion, you’ll
remember I stated that the drive

search parameters are ignored
when a drive letter is included in
the file specification. Accordingly,
the OnChange handler for the file
specification edit box checks for a
drive letter (actually, it just checks
that the second character is a
colon, but this is probably good
enough!) and enables or disabled
the six affected checkboxes as
appropriate.

The GoClick method is called
when you click the Gobutton. It cre-
ates an instance of a TTreeFind
object, initialises the SearchFlags

September 1997 The Delphi Magazine 39

and FileSpecproperties and points
the Progress property at a routine
which merely updates the form
caption, simple, but effective.
Before calling the Execute method,
the Go button is disabled. This
raises the question of re-entrancy;
it goes without saying that you
shouldn’t change any of the
TTreeFind object’s properties or
call the Execute method from
inside the progress hook! If you do,
large hairy warts will grow all over
your program, if not yourself. It’s
unlikely that this could happen
accidentally, except possibly in a
multi-threaded program but if you
want to positively guard against
the possibility, then you could put
an exclusion lock into the
TTreeFind code, the lock being
active while a search is in progress.
If you have other user interface ele-
ments to drive during a file search,
then you should also include a call
to Application.ProcessMessages in-
side the progress hook.

The last piece of interesting code
is the double-click handler for the
list-box. It checks to see if it’s a
zipped entry and gets the appropri-
ate filename from the selected list-
box entry before calling ShellExe-
cute to actually ‘launch’ the appli-
cation associated with the clicked
file type.

So Where’s The
Doomsday Device?
Years ago, during the height of the
Cold War, there were stories of a
nuclear weapon called the Dooms-
day Device. This American (or
Russian, depending on who told
the story) bomb was believed to be
so powerful that if ever detonated,
it would destroy all life on the
planet. I certainly don’t know how
to build such a device and, even if
I did, I wouldn’t tell you. But
TTreeFind potentially gives you the
Delphi programmer’s equivalent! I
have deliberately not included any
code to copy , move or delete files
because I don’t want to be respon-
sible for unleashing destruction on
your hard disk. If you want to write
code like this:
with tf do

for Idx := 0 to TheList.Count - 1 do

DeleteFile (TheList [Idx]);

then you’re on your own; or at
least, you very soon will be once
your email package has been
vaped from your hard disk! All I’m
stressing is that you need to use
tree-walking code with some care.
By all means write your own
Doomsday Device, but please show
the user a list of files that are going
to be deleted by a particular opera-
tion and give the user the option of
cancelling before letting slip the
dogs of war!

Finally, please note that the ver-
sion of ZIP.PAS included on this
month’s cover disk is ever so
slightly different to what I pre-
sented last time round. It’s not a
bug fix, but I’ve altered an excep-
tion generating routine so that, if

an invalid ZIP file is encountered,
then the offending filename is
reported by the exception. The
new line of code is shown below,
it’s in TZipFile.SetZipName:

if tailPos < 0 then raise

EZipErr.CreateFmt (‘%s is not

a valid ZIP file’, [FileName]);

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the author of Instant Delphi
Programming published by Wrox
Press. You can contact Dave as
Dave@HexManiac.com

On our Web site:
http://www.itecuk.com
Here’s some of what you can find:

➤ Updated program and data files for TDMAid,
the Article Index Database.

➤ TDMaid Online for immediate access!

➤ The Delphi Magazine Book Review Database.

➤ Is your companion disk dead? The source and example files from
the articles for the last few issues are here for download.*

➤ Details of what’s in the next issue.

➤ Back issues: contents and availability.

➤ Sample articles from back issues.

➤ Links to other great Delphi sites.

	Sixteen Bits? Just Say No...
	The Testbed Program
	A Match Made In Heaven...
	That’s Progress...
	Finder, The Testbed Program
	So Where's The Doomsday Device?
	On our Web site:

